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Abstract

As time progresses, computer architects continue to create faster and more complex micropro-

cessors using techniques such as out-of-order execution, branch prediction, dynamic schedul-

ing, and predication. While these techniques enable greater performance, they also increase

the complexity and silicon area of the design. This creates larger development and testing

times. The shrinking feature sizes associated with newer technology increase wire resistance

and signal propagation delays, further complicating large designs. One potential solution is

the Single-Chip Message-Passing (SCMP) Parallel Computer, developed at Virginia Tech.

SCMP makes use of an architecture where a number of simple processors are tiled across a

single chip and connected by a fast interconnection network. The system is designed to take

advantage of thread-level parallelism and to keep wire traces short in preparation for even

smaller integrated circuit feature sizes.

This thesis presents the implementation of the MPI (Message-Passing Interface) commu-

nications library on top of SCMP’s hardware communication support. Emphasis is placed

on the specific needs of this system with regards to MPI. For example, MPI is designed to

operate between heterogeneous systems; however, in the SCMP environment such support is

unnecessary and wastes resources. The SCMP network is also designed such that messages

can be sent with very low latency, but with cooperative multitasking it is difficult to assure a

timely response to messages. Finally, the low-level network primitives have no support for

send operations that occur before the receiver is prepared and that functionality is necessary

for MPI support.
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Chapter 1

Introduction

1.1 SCMP

The SCMP (Single Chip Message-Passing) parallel computer system is a design that uses

multiple processor cores on a single chip[1]. Each processor core has 2-8 MB of local memory,

hardware support for multiple threads, and a network interface unit (NIU) for communicating

with the rest of the processors. The basic components of each processor are shown in

Figure 1.1. The processor cores are arranged in a grid and connected to neighbors in the

four cardinal directions by an on-chip mesh network, as shown in Figure 1.2. This design

serves a few different purposes.

First, it provides for easy thread-level parallelism. Instruction-level parallelism has its lim-

its, and designers have reached a point of diminishing returns in trying to extract further

instruction-level parallelism[2]. Thread-level parallelism is easier to make use of, and many

applications are known to parallelize well. Even applications that were previously thought to

have too high of a communication to computation ratio to parallelize well may be successful

when the latency of the interconnect is sufficiently low, and SCMP’s on-chip network creates

1
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Figure 1.1: Internals of a SCMP Node

Figure 1.2: A SCMP 4x4 Grid of Processors

a potential for very low latency communications.

Second, processor design costs are rising[3][4]. Total design costs for processors increase as

the architecture gets more complex and the number of transistors increase. These costs

include development, verification, and testing costs. Silicon area is increasing faster than

designers can reasonably make use of it, hence a trend towards larger caches, since they

provide a performance improvement with very low design time. The ability to tile a design
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is crucial to the minimal effort required for increasing cache size, and the same technique is

used with SCMP. Instead of tiling cache elements, the SCMP design relies on tiling entire

processors.

As semiconductor feature sizes decrease, transistors get faster and more of them can be

placed on a chip of a given size. An unfortunate side effect of this decrease in feature size is

that it requires a corresponding decrease in the width of wires connecting those transistors.

Thinner wires have higher resistance and, as a result, higher propagation delays. The SCMP

design compensates for this by minimizing wire lengths throughout the device. Individual

processors are small, network connections are only provided to immediate neighbors, and

each processor has its own memory, keeping memory access times short.

By creating a simple RISC processor that may not perform as well as a modern desktop

processor and then laying many of them down on a single chip, this design takes advantage

of the short design time of a simple processor. Yet, it has the potential to surpass modern

desktop processors in performance. In this case, the small size of the design is advantageous,

as it allows more processors to be tiled on a single chip. Instead of using a large amount of

silicon space and designer time to add features that provide minimal performance improve-

ments, that space can be filled with more processor cores, and current performance numbers

show this to be a promising ideology.

1.2 MPI

The MPI (Message Passing Interface) communications library[5] is designed for use with

high-performance computing on clusters and multiprocessor systems. In fact, it is completely

unsuitable as a general communications library as most implementations require knowledge

of the entire network before beginning and different implementations are not interoperable

(however, there is an “Interoperable MPI” standard as of 2000[6]). As a parallel commu-
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nications library, MPI provides an impressive library of functions for moving data between

cooperating processes. The intention of MPI is to provide a platform for the creation of

high-performance parallel applications that can allow them to be ported to many different

parallel systems.

This is considered important for two reasons. First, it allows companies to create parallel

applications that can be easily ported between different systems allowing them to benchmark

applications on multiple systems. The ability to do this allows reasonably fair comparisons

between different hardware configurations. Second, it allows users to change their hardware

and operating environment as time goes on without rewriting their software. This flexibility

means that users are not locked into a hardware environment once the software is written. It

also allows for the creation of parallel libraries and benchmarks that can be run unmodified

on a number of different systems thus preventing work from being duplicated for every

different system.

At this point, MPI is arguably the most popular parallel communications library, especially

for distributed memory systems. Its popularity is due to its portability and its flexibility

in supporting a number of communications paradigms. It also has a large emphasis on

performance and whenever possible it is designed to allow optimizations such as in-place

transfers from memory to the network. With a standard consisting of over 120 functions[5],

it is designed to be a powerful and flexible library. This thesis will explain many of the

details of the MPI standard in Chapter 3.

1.3 Rationale for MPI on SCMP

The design of a new processing architecture requires a tremendous amount of analysis after

the initial design is complete. Not every design that looks good on paper will actually

show a performance improvement. All designs require analysis to determine applications for
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which the platform performs well or poorly. There are many ways to make such analysis,

including purely theoretical analysis, synthetic benchmarks, and actual applications. While

theoretical analysis and synthetic benchmarks are useful in the early stages of the design,

actual applications must be run on the design to get a complete picture of the performance

capabilities and bottlenecks.

A number of applications have been ported to the SCMP architecture in an attempt to

determine its performance, but porting can be a long and tedious process. One of the

greatest barriers to efficient porting is that the on-chip network provides only the most

basic communications facilities. The native SCMP network support is limited to writing

data to remote memory locations and invoking remote methods as a new thread on the

remote processor. This means that parallel programs using more advanced libraries require

significant effort to convert.

One such communications library for parallel systems is MPI, as mentioned above in Sec-

tion 1.2. The research team decided that creating an implementation of MPI for the SCMP

platform would allow quick porting of existing MPI applications as well as providing rich

communications functionality for future development. Such functionality would ease porting

existing applications using other libraries and also would make original programs easier to

develop. Providing a message-based communications library in addition to the fast message

support already present would increase the options available to the SCMP developer.

Message-passing systems are often considered to be more difficult to write software for than

shared-memory systems, which mimic the memory semantics of the single processor systems

that most programmers learned to write software on. The need to explicitly move data

around requires more effort on the part of the programmer. However, the requirement of

explicitly planning the data movement can lead to more efficient software since it is obvious

which instructions will require communications activity. By creating a more sophisticated

message-passing library to be used on the SCMP system, it is hoped that developers will be
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more comfortable with the message-passing paradigm.

Using a high-level communications library such as MPI instead of the native SCMP mes-

saging support will undoubtedly come with a performance hit. Any form of abstraction will

always have overhead. The ability to send a message without knowing if the destination

is prepared to receive it implies that either the sender and receiver must communicate and

determine if the message can be sent at the current time, or the receiver needs to allocate

temporary storage to put the message in and copy it into the real destination once that is

known. While overhead is unavoidable, an implementation can be designed to take advantage

of features of the underlying hardware to minimize that overhead.

This thesis discusses the creation of an MPI implementation for the SCMP hardware design.

This implementation will take into account the architecture of the SCMP design in an at-

tempt to provide sufficiently high performance that MPI can be used in place of the standard

SCMP network primitives in some cases without changing the general performance relation-

ship between this system and other machines. Since SCMP hardware has not yet been

fabricated, a cycle-accurate hardware simulator will be used for performance benchmarking

purposes.



Chapter 2

Background and Related Work

This section will quickly describe some background information for this work. First, it will

provide a brief survey of parallel communications libraries. Next, it will describe the SCMP

network support since an understanding of the communications ability of the hardware is

important to understanding the design decisions made during the design of this communica-

tions library. Finally, some related work into additional hardware communications support

will be described.

2.1 Parallel Communications Libraries

Over time, a number of communications libraries have been developed for use in parallel

processing applications. The following are three language-neutral communications libraries

that are well-known in the high-performance computing community. There are also a number

of language-specific libraries including Co-Array Fortran, High Performance Fortran, and

Unified Parallel C; however, they have not been described here for the sake of brevity.

7
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2.1.1 Active Messages

Active Messages are often referred to as a “RISC approach to communication,” due to an

API that provides simple primitives for communication which, by design, map efficiently

onto hardware and thereby meet the requirements of higher-level communications libraries.

While Active Messages could be used as a parallel communications library by itself, it is

more often used to implement a higher-level communications library such as PVM or MPI.

As described in [7]:

Active Messages is an asynchronous communication mechanism intended to ex-

pose the full hardware flexibility and performance of modern interconnection

networks. The underlying idea is simple: each message contains at its head the

address of a user-level handler which is executed on message arrival with the

message body as argument. The role of the handler is to get the message out

of the network and into the computation ongoing on the processing node. The

handler must execute quickly and to completion. ... this corresponds closely to

the hardware capabilities in most message passing multiprocessors where a priv-

ileged interrupt handler is executed on message arrival, and represents a useful

restriction on message driven processors.

The inherent SCMP network support was patterned somewhat in the style of Active Mes-

sages. When later sections describe the SCMP network support, notice the similarities

between Active Messages and SCMP THREAD messages — both provide the address of a

handler function and each word of data in the message is passed as a parameter to that

function. Active Messages also provides a simple interface on top of which more advanced

libraries can be built.
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2.1.2 Parallel Virtual Machine (PVM)

PVM (Parallel Virtual Machine) is a message-passing communications library designed to

link multiple processing resources into one “virtual machine.” Implemented by running PVM

daemons on each physical machine, the virtual machine effectively provides a distributed

operating system. PVM was created by a single research group at Oak Ridge National

Laboratory (ORNL) in 1989 as they developed an implementation of the library[8]. Many

of its features evolved from incremental improvements requested by users. PVM came to be

the prevailing standard before the creation of MPI, which is discussed next.

The design of PVM aimed for portability over performance. It was developed with a focus

on networked clusters of heterogeneous machines, which implied a communications fabric

of low performance LANs or possibly the Internet. Also, the goals of the project included

scaling, fault tolerance, and heterogeneity of the virtual machine rather than process speed.

PVM 3.0 was released in 1993 with an updated API to provide support for virtual machines

of multiple large multiprocessors.

2.1.3 Message Passing Interface (MPI)

MPI (Message Passing Interface) is a message-passing communications library designed by

the MPI Forum, a group made up of a diverse selection of implementers, library writers,

and end users. This development structure imbued the library with a well-defined, object-

oriented design from the very first implementation. MPI’s use of opaque objects (objects

whose contents are not visible to the user) allows extensions to the standard without breaking

existing code.

The MPI Forum was first started in April 1992, a first draft of the MPI standard was

presented in 1993, and it was released in 1995. Started by massively parallel processor
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(MPP) vendors to avoid each creating incompatible standards, the standard emphasizes

high performance within a portable design. Features include a large set of point-to-point

and collective communications routines, communications contexts, and derived datatypes

that support messages of noncontiguous data. MPI will be covered in detail in Chapter 3.

2.2 SCMP Network

The primary advantage from putting multiple processors on a single piece of silicon is the

improved communications abilities between processors. Some applications have so many

dependencies within themselves that turning the program into multiple threads of execution

requires too much communication to be efficient. Either the communication required may

serialize the different threads of execution, or the threads spend so much time waiting for

data to get from one thread to another that the computation time is overshadowed by the

communications time.

If the communication serializes the threads, not much can be done aside from trying to

decompose the program in a different manner. However, if the communications time is

too long, it is possible that a higher bandwidth or lower latency communications network

could make the existing program partitioning acceptable. The SCMP multiprocessor is

designed to take advantage of its low-latency, high-bandwidth on-chip communications to

enable parallelization of processes that may have been inefficient to parallelize before.

2.2.1 Network Hardware

The SCMP network is a grid network where every processing element is connected to a

router which is, in turn, connected to the north, south, east, and west neighbors. One of

the goals of the SCMP design is to keep wire lengths small to minimize latency and skew
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Head Flit Address Flit Data Flit ... Data Flit Tail Flit

Figure 2.1: Flits in an SCMP Network Message

Valid Head=1 Tail X Offset x 4 Y Offset x 4 THREAD/DATA Stride x 23

Figure 2.2: Head Flit Structure

considerations, which makes non-neighbor network connections undesirable. An emphasis on

keeping wire lengths short is partially due to the shrinking of wire diameters accompanying

the traditional shrinking of transistors as fabrication processes improve. Thinner wires result

in higher resistance, which translates into greater propagation delay[9]. The router uses a

pipelined design to improve throughput and wormhole switching to reduce latency.[10]

Wormhole switching involves breaking a message up into “flits” or flow-control digits. Mes-

sages in general are made up of a head flit, data flits, and a tail flit. The SCMP design uses

the first data flit as a special “address” flit. The layout of a message is shown in Figure 2.1.

The key to wormhole switching is that the head flit contains all the information needed to

route the message. This way, once the routing is determined for the head flit, it can be sent

along that path and the router knows to send every other flit that came over the link used

by the head flit the same way until a tail flit is seen. At that point, it prepares for a head

flit from another message. This is opposed to “store and forward” routing which waits for

an entire message then passes that message on. Wormhole switching has much lower latency

because it pipelines transmission of the parts of a message.

Valid Head Tail Data x 32

Figure 2.3: Data Flit Structure
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Flits in the SCMP network are actually 35 bits wide, but only carry a data payload of 32

bits. The use of the other bits is shown above in Figure 2.2 and Figure 2.3. Both structures

have a Head bit, which is 1 when the flit is a head flit, and a Tail bit, which is 1 when the

flit is a tail flit. Also a Valid bit is used by routers to determine if a flit is coming across a

link from another router. The Valid bit is added when the flits enter the network.

The head flit contains the address of the destination processor as an X offset and a Y

offset. Messages are routed in the SCMP network using dimension-order routing. Dimension

order routing is a deadlock-free routing algorithm that causes data to be routed along one

dimension until it is at the correct location in that dimension and then to be routed along the

next dimension until it reaches its destination. Using offsets further simplifies the process.

The first bit of the offset is the direction along that dimension and the rest of the bits are

devoted to the number of hops in that direction. The SCMP router routes in the X dimension

first, so if the last three bits of the X offset are not ‘000’, then it knows it needs to route in

the X dimension. The first bit tells it which direction it needs to go and, therefore, which

output channel it will use. Finally, before the message is passed on, the router decrements

the last three bits of the offset. If a router receives a message with zero magnitude X and Y

offsets, it knows to route it to the injection/ejection channel that goes to the NIU (Network

Interface Unit) of the node associated with the router. This system is especially elegant

because it allows the routers to operate without context — a router does not need to know

where it is located or how to get to a specific destination node.

SCMP supports two different kinds of network messages: THREAD and DATA. THREAD

messages cause allocation of a thread at the destination, setting the instruction pointer (IP)

to the address sent in the second flit of the message, and loading the registers with values

from the flits after that. That thread will not execute immediately, but instead will have to

wait until threads before it in the queue give up the processor. THREAD messages ignore

the stride value. DATA messages cause the destination processor to use a DMA transfer to
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write the data from the body of the message into the processor’s memory. The “stride” value

causes the receiving processor to place incoming words “stride” words apart in memory. This

is especially useful for sending columns from a 2-dimensional array in a language that stores

arrays in row-major order (like C).

A final feature of the SCMP network hardware is the use of virtual channels. Virtual channels

allow different messages to be multiplexed over the physical channels. Typically, only one

message can use a physical link at a time; however, virtual channels provide the appearance

of multiple physical links over a single physical link in order to prevent congestion. This is

important in wormhole switching because whenever a message gets blocked for some reason, it

continues to occupy much or all of the path from its source to its destination. These occupied

links cannot be used by other messages while that message is blocked in the network. Virtual

channels allow messages that are able to make progress to do so while other messages are

blocked over the same links.

2.2.2 Network Instructions

The SCMP hardware has some built-in machine level network instructions in order to fa-

cilitate efficient communication between processors. A list of instructions is provided in

Table 2.1. The SENDH_I and SENDH_R instructions create the head flit and have the NIU

(Network Interface Unit) inject it into the network. The rest of the instructions send data,

and possibly set the tail bit on the last flit to signal the end of the message. Note that the

instructions are at the abstraction level of creating flits, instead of a higher level, such as

sending whole messages. This allows messages to be built on the fly straight into the net-

work; however, it also increases the time spent to transfer a message if computation occurs

between sending flits, which can increase network contention.

One feature worth noting is that when a DATA message is sent with a stride value, this does
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not necessarily correspond to the stride as used on the source processor. This allows for

some interesting capabilities, including the ability to transpose matrices by sending a row

(stride=1) and having it stored as a column (stride = number of columns) or vice-versa. This

can also be useful if data for a problem is decomposed by giving one item to each processor.

In this case, a processor could distribute data by using a local stride equal to the number

of processors and a destination stride of 1. Then this data could be sent back using a local

stride of 1 and a destination stride equal to the number of processors.

At the level of C code, there is yet another level of abstraction. The C commands, however,

are designed to be very efficient. They only add more functionality in order to compensate

for the function call overhead (if each assembly instruction was wrapped in a C function, the

function call overhead would dominate the communication time). A list of thread-related

functions is in Table 2.2, and a list of data-related functions is in Table 2.3.
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Table 2.1: SCMP’s Network Instructions

Instruction Parameters Explanation

SENDH_I dest(r),

type(i),

addr(i)

Sends a head flit, which begins the transmission of a

message. The type parameter determines if the mes-

sage is a THREAD or DATA message. The immedi-

ate address parameter is limited to 17 bits.

SENDH_R dest(r),

type(i),

addr(r),

stride(i)

Sends a head flit, much like SENDH_I. This version

uses a register for the address parameter to allow

larger addresses.

SEND2 data1(r),

data2(r)

Sends two data flits, one from each register.

SENDE data(r) Sends a data flit with the tail bit set to end the mes-

sage.

SEND2E data1(r),

data2(r)

Sends two data flits with the tail bit set on the second

one to end the message.

SENDM addr(r),

stride/count(r)

Tells the NIU to send data directly from memory us-

ing a DMA transfer. The upper 16 bits of the second

parameter provide the stride value and the lower 16

bits provide the number of data items to send.

SENDME addr(r),

stride/count(r)

Works like SENDM, except the last flit will have the

tail bit set to end the message.

(r) - Register Parameter / (i) - Immediate Parameter
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Table 2.2: SCMP’s C Network Functions — THREAD

Function Parameters Explanation

createThread int dst_node,

void(*addr)(),

void(*callback)(),

...

Creates a thread on the destination

node dst_node calling the function at

addr, passing all additional parameters to

that function, then calling the function

callback on the local node when done.

parExecute int num_nodes,

void(*addr)(), ...

Creates a thread on num_nodes nodes

calling the function at addr and passing

the additional parameters to the function.

This also waits for all threads to complete

before continuing.

getBlock unsigned node_id,

char *dst_addr,

unsigned dst_stride,

char **src_addr,

unsigned src_offset,

unsigned src_stride,

unsigned num_words

Creates a thread on node node_id that will

send the data message specified in the pa-

rameters. This is needed since the network

library only supports sends explicitly, not

receives.
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Table 2.3: SCMP’s C Network Functions — DATA

Function Parameters Explanation

sendDataIntValue int dst_node,

int *dst_addr,

int value

Sends a single integer to be written to

dst_addr on node dst_node.

sendDataFloatValue int dst_node,

double *dst_addr,

double value

Sends a double floating point value to be

written to dst_addr on node dst_node.

sendDataBlock int dst_node,

int *dst_addr,

int dst_stride,

int *src_addr,

int src_stride,

int count

Sends a block of values count words long

from address src_addr on the local node to

address dst_addr on node dst_node, using

src_stride and dst_stride to determine

the spacing of the source and destination val-

ues. It blocks until the transfer completes.

sendDataBlockNB int dst_node,

int *dst_addr,

int dst_stride,

int *src_addr,

int src_stride,

int count

This is a non-blocking version of

sendDataBlock().
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The most common network functions used in C are createThread(), sendDataIntValue(), and

sendDataBlock(). createThread() is used to send a THREAD message to execute code on a

remote processor. Starting a thread on another processor is the easiest way to send control

messages between processors. DATA messages can overwrite each other and cause a variety

of other problems when used as control messages. sendDataIntValue() is a simple function

that sends a single integer to a remote process using a DATA message. This is often used

for synchronization to set a flag. Finally, sendDataBlock() is used to send a block of data

from one processor to another using a DATA message. This function supports destination

and source strides, and it uses the SENDM primitive for most of the communication, freeing

the processor to do other things while the data is being sent via DMA.

2.2.3 Characteristics

Three important characteristics of the SCMP network from a design standpoint are as follows:

1. THREAD messages are virtually the only kind of message that can be used in control

situations

2. Data can be transferred in the background using DMA

3. The on-chip network is designed to be able to send 2 flits of data per processor clock

cycle.

Note that the ability to inject two flits (64 bits) of data into the network per clock cycle

implies that time spent on computation will dramatically increase the data transfer time,

since data can be transferred so quickly. These characteristics will be explained in further

detail in Section 4.1.
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2.3 SCMP Hardware Messages

Charles W. Lewis, Jr. has made progress in implementing hardware-based messages on

the SCMP hardware[11]. This functionality was being developed in parallel with the MPI

implementation that is at the heart of this thesis. However, one of the prime motivations

for creating hardware message support is to enable the implementation of communications

libraries such as MPI more efficiently. Since this project was not complete during that work,

analysis of the MPICH[12] library was used to help determine the requirements of such

hardware support. As a result, this work should be discussed here for completeness.

The MPI library provides an API for full send/receive message semantics, and it makes sense

to explore hardware support for this communication paradigm. When creating a software

solution for message semantics, it becomes clear that hardware support could overcome a

few problems encountered in the purely software approach. While these difficulties will be

explained further in later sections, suffice to say that sending a message to a process that is

not prepared to receive it requires some overhead that would be unnecessary if there were

hardware support for that operation.

The proposed hardware message support includes options for both ready-mode sends (where

the receiver is required to be ready for the receive before the send operation occurs) and

rendezvous-mode sends (where a handshake occurs to prevent the sender from sending before

the receiver is ready). Since ready-mode sends are not supported in this MPI implementation,

only rendezvous-mode sends will be discussed. This hardware scheme effectively allows

the NIUs (Network Interface Units) of the sender and receiver to perform the handshake

operation instead of requiring software support. The sender sends a RTS (Request To Send)

message to the receiver, when the receiver is ready it sends a CTS (Clear To Send) message

back to the sender, and then the sender starts transferring the message to the receiver.

With this sort of support, the network round-trip-time becomes the limiting factor for the
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latency associated with sending messages. Performing this service in hardware instead of

software, at a minimum, removes the processor cycles dedicated to creating a thread to

perform the operation and the code to perform the operation itself. It can also drastically

decrease latencies due to processors currently performing an operation and not allowing these

newly-created threads a chance to execute.



Chapter 3

Introduction to MPI

The MPI communications library is a complex piece of software. The MPI 1.2 standard,

which the implementation in this thesis uses as a guide, consists of approximately 120 func-

tions. This chapter is not an exhaustive reference — an implementor or user of MPI would

need something more detailed — but it is designed to provide the reader with knowledge of

the basic structure of MPI and the most commonly used functions in the standard. A casual

reader may find it more useful to try to skim this section instead of attempting to absorb

all of the details.

This chapter starts out explaining the MPI concepts of Groups and Communicators, along

with some common functions for manipulating these objects. After that, MPI’s support

for user-defined datatypes will be explained. Finally, point-to-point communication and

collective communication functions will be described.

21
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3.1 Groups

Most communications libraries have the concept of a group of processes. In MPI, a group of

processes is represented by an opaque MPI_Group data structure. Most of the functionality

associated with groups is fairly straightforward, so this shall be a brief overview.

First, the functions MPI Group size() and MPI Group rank() are used by a process to de-

termine the size of a group and what its rank within the group is (if it is not a member of the

group, the function returns MPI_UNDEFINED). The function MPI Group translate ranks() can

be used to determine the ranks of processes in one group if their ranks are known in another

group. For example, if the ranks of some processes are known in the group associated with

MPI_COMM_WORLD (the default communicator, which will be discussed in the next section),

this information can be used to determine the ranks of those processes in another group.

This function will return MPI_UNDEFINED in the results array for any process listed that is

not in the second group, so it can also be used to determine what processes are in that group.

MPI Group compare() will compare two different groups and determine if they are identical

(MPI_IDENT), similar (MPI_SIMILAR), or unequal (MPI_UNEQUAL). In this context, two groups

are identical if they have the same members in the same order and similar if they have the

same members but in a different order. The function MPI Comm group() is used to deter-

mine the group associated with a communicator (again, communicators will be explained in

the next section).

Finally, there are a number of set-like operations available on groups. The functions that

perform these operations are MPI Group union() (which returns the set union of two groups,

with the elements of the first group first), MPI Group intersection() (which returns the set

intersection of two groups, ordered as in the first group), and MPI Group difference() (which

returns all elements in the first group but not in the second). There are some more group

modification functions, such as MPI Group incl() (which lets you specify which members of
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one group you want in a new group), MPI Group excl() (which allows duplication of a group

with certain members excluded), and MPI Group range incl() and MPI Group range excl()

(which perform much like the last two functions, except these allow you to specify ranges of

processes). Finally, there is MPI Group free() to deallocate a group.

3.2 Communicators

MPI introduces the notion of communicators. Communicators are opaque objects (of type

MPI_Comm) that represent a specific communications domain. Communicators are associated

with a group of processes, but there may be multiple communicators that are associated

with the same or overlapping groups. All communicators have a size, which is the number

of processes in the group associated with it. Every process has a unique numeric rank

in every communicator of which it is a part. This is the same as its rank in the group

associated with the communicator. Every communications operation must be associated

with a communicator.

The driving force behind the use of communicators instead of other methods of keeping

unrelated communications separate is that a library can take a provided communicator,

duplicate it, and ensure that it can communicate with all of the processes belonging to

the original communicator without those messages being confused with messages from the

program itself. MPI supports the notion of supplying each message with a numeric “tag” so

receives are only matched with sends that use the same tag. However, there is no way for

libraries to know which tags are in use by the program, and therefore there is no way for a

library creator to safely separate their communication from that of the base program using

tags alone. Even setting aside a tag space for libraries, if one library called another library,

the same problem remains.

When an MPI program starts, one communicator is created by default, called MPI_COMM_WORLD.
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This communicator represents the set of all of the processes that are part of the system. Addi-

tional communications domains can be created by calling MPI Comm dup() to create a new

communicator with the same group of processes as before, by calling MPI Comm create()

with a group of processes that should be included in a new communicator, or by calling

MPI Comm split() to break an existing communicator into a set of new communicators with

disjoint subsets of processors.

MPI Comm split() is especially flexible and requires further discussion here. It takes a base

communicator, a “color”, a “key”, and it returns into a pointer to either a new communicator

that contains this process or MPI_COMM_NULL. The “color” and “key” parameters may be,

and usually are, different on every process. Every process with the same “color” parameter

ends up in the same new communicator produced by this function. The “key” parameter

determines the ordering of the ranks of the processes in the new communicator — ties

are broken by using the processes’ rank in the old communicator. The following example

demonstrates how this command could be used to produce a communicator for every process

in MPI_COMM_WORLD that contains only members of its column. If called on a 4x4 grid of

processors, it would create 4 communicators consisting of the following processors: (0,4,8,12),

(1,5,9,13), (2,6,10,14), and (3,7,11,15).

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

MPI_Comm_split(MPI_COMM_WORLD, myRank % getXDim(), myRank, &column_comm);

It is also worth nothing that the functionality of MPI Comm dup() can be emulated with

the following command. Note how the “color” and “key” parameters are the same on every

process.

MPI_Comm_split(MPI_COMM_WORLD, 1, 1, &duplicate_comm_world);

The remaining communicator functions are all fairly straightforward. MPI Comm size()
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and MPI Comm rank() are simply shortcuts for MPI Group size() and MPI Group rank()

called on the group associated with the communicator. The function MPI Comm free()

can be used to free the memory associated with a communicator that is no longer in use.

MPI Comm compare() can be used to compare two communicators in a similar manner to

how MPI Group compare() compares groups, except that this function can return MPI_IDENT

(if they represent the same communications domain), MPI_CONGRUENT (if the communications

domains are different, but the groups are identical), MPI_SIMILAR (if the associated groups

have the same members, but not in the same order), or MPI_UNEQUAL (if the groups are

different).

3.3 Type functions

The MPI standard provides a rich set of features for manipulating datatypes. MPI comes

with a full set of predefined datatypes, some of which are listed with their C equivalents in

Table 3.1. Note that all datatypes are of type MPI_Datatype. Two types in particular need

some explanation. First, MPI_BYTE is not defined as a C type because different machines may

interpret characters differently, but a byte is specifically 8 bits of data without interpretation,

so char is not a valid type to define MPI_BYTE. The other type that needs explanation is

MPI_PACKED. This datatype is the result of using the MPI Pack() function, which will be

explained shortly.

Despite providing a good variety of predefined datatypes, MPI also provides a number of

functions for creating new datatypes. Before getting into those functions, however, some

concepts MPI has regarding types need to be explained. Every datatype in MPI has a

lower bound, an upper bound, and an extent. These properties are related by extent =

upper bound − lower bound. Datatypes also have a size, which is a distinct concept from

the extent.
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Table 3.1: Some Predefined MPI Datatypes

MPI Datatype C Equivalent

MPI_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_SHORT signed short

MPI_UNSIGNED_SHORT unsigned short

MPI_BYTE n/a

MPI_INT signed int

MPI_UNSIGNED unsigned int

MPI_LONG signed long

MPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI_DOUBLE double

MPI_PACKED n/a

In most datatypes, the lower bound is 0 and therefore the upper bound is equal to the extent.

However, MPI allows the lower bound to be explicitly set to positive or negative numbers.

For example, a user could create a datatype with a lower bound of -5. If the user then tried

to send an element of this type from a buffer located at address 100, MPI would start reading

the data from address 95. If the user had set the lower bound to 5, MPI would have started

reading the data from address 105.

The concept of the extent is important as well. For example, assume a machine that requires

doubles to be aligned at addresses that are multiples of 8. Suppose a type was defined with

a double at offset 0 and a char at offset 8. The notation {(double,0),(char,8)} will be

used to represent this datatype. The total size of the datatype would be 9, since MPI uses

the term size to mean the total size of the data in the message. However, placing two of
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these structures in memory would require more than 18 bytes due to alignment restrictions.

As a result, the extent of the datatype is 16, since 7 bytes of spacing would be required. To

tie this in with the discussion of lower and upper bounds, the lower bound of this datatype

would be 0 (since it starts at offset 0) and the upper bound would be 16 (since that is the

sum of the lower bound and extent).

With that background information, the discussion of datatype creation can begin. There is

a function, MPI Type dup(), that will duplicate a datatype, but this is of limited use to most

people. The MPI Type contiguous() function can create a new datatype that represents an

array of elements of another datatype. It takes the number of elements wanted in the array,

the base datatype to create the array from, and a pointer to the new datatype. For example,

MPI_Type_contiguous(5, MPI_INT, &int_array); would create a type called int_array

which could be used to transmit an array of 5 integers. Note that sending 5 MPI_INT objects

from a buffer is identical to sending 1 int_array object, and that it is legal to use them

interchangeably (i.e., you can send 5 MPI_INT objects from one process and receive it as 1

int_array object at its destination). Note that MPI Type contiguous() uses the extent of

the base datatype to determine the spacing between elements.

MPI Type vector() is similar to MPI Type contiguous(), except that it also takes “block-

length” and “stride” parameters. This function creates an array of “count” blocks, each of

which is “blocklength” elements long, and which have “stride” elements between the start

of adjacent blocks. For example, calling this function with a count of 2, a blocklength of 2,

a stride of 3, and a base type of MPI_INT (which we will assume has an extent of 4 bytes),

would produce the datatype {(int,0),(int,4),(int,12),(int,16)}. Note that there are

two integers adjacent to each other, then a space the size of an integer, then two more in-

tegers adjacent to each other. The two blocks of two integers started three integers apart.

The MPI Type create hvector() function is the same except the stride is specified in bytes

instead of multiples of the base datatype.
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The MPI Type indexed() function allows a user to specify a data layout much like MPI -

Type vector(), except that it takes an array for the blocklength parameter and, instead of

specifying a stride, an array of displacements is used. This allows layouts where the blocks

are of different lengths and the spacing between the blocks is not consistent. The “count”

parameter specifies how many elements are in the arrays. MPI Type create indexed block()

has similar functionality, except that it allows the user to specify a single blocklength that

will be used for all blocks. MPI Type create hindexed() changes MPI Type indexed() to use

byte displacements instead of using a number of elements.

MPI Type create struct() is effectively an extension of MPI Type create hindexed() that takes

an array of datatypes instead of a single base datatype. The displacements are specified in

bytes, since number of elements becomes ambiguous when dealing with multiple datatypes.

This function has the power to define datatypes even greater in complexity than the C

struct keyword is able to define since it allows the user to explicitly list the displacement

of each element. Every type creation function described thus far can be implemented with

MPI Type create struct().

After a custom datatype is created, the user must call MPI Type commit() on the type before

it can be used in a communication. MPI Type free() can be called on a datatype once it is

no longer needed.

One of the main uses of these custom datatypes is to be able to send non-contiguous data as

easily as sending predefined datatypes. For example, a user could easily define a datatype

that would allow them to send every 3rd integer from an array. In communications libraries

that do not allow such flexible creation of datatypes, the standard technique is to “pack”

the data into a contiguous buffer before sending it. To allow users to continue to use this

paradigm, MPI provides MPI Pack() and the associated MPI Unpack(). These functions are

also more efficient in some cases than explicit datatype creation, especially when the structure

of the data is not known beforehand and that structure would need to be communicated to
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the recipient along with the data.

MPI Pack() allows the user to “pack” elements into a buffer, then send it as an element of

type MPI_PACKED. When received on the other end, the user can “unpack” the constituent

elements by using the MPI Unpack() function. MPI also provides MPI Pack size(), which

will calculate the amount of space required to pack something and, thus, allow the user to

determine an appropriate buffer size.

3.4 Send/Receive Semantics

The basic MPI primitives for sending and receiving messages are MPI Send() and MPI -

Recv(). Both take the following parameters: a buffer to read data from or write data

to, the number of elements to send/receive, the datatype of the elements to send/receive,

the source/destination address, a numeric tag used to prevent similar sends/receives from

being confused with each other, and the communicator that this transfer should use. The

MPI Recv() command also allows a user to provide a pointer to an MPI Status object so

that it can return some information about the transfer.

One of the defining characteristics that shapes the implementation of these routines is that

while MPI Send() requires a destination and a tag, the MPI Recv() command can be passed

the constants MPI ANY SOURCE and/or MPI ANY TAG as the source and tag parame-

ters, respectively. This means that the receiver may not even know where the message is

coming from. As a result, in the general case, messages are “pushed” by the sender to the

receiver instead of having the receiver request the message from the sender.

Another characteristic to note is that there are non-blocking versions of both functions

(MPI Isend() and MPI Irecv()). Messages sent by nonblocking sends may be received by

blocking receives and vice-versa. This means that there must be support for receiving mes-
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sages out-of-order since the message you want to receive may not be the first message you

will get.

There are three versions of each send command that explicitly specify the mode of operation

for the transmission. The normal MPI Send() and MPI Isend() calls use the “standard”

mode, which is the implementation default. The standard mode is considered to be a “non-

local” operation because it is not guaranteed to be able to complete without communicating

to other processes. The normal receive calls will receive data sent by any of the send modes.

The first explicit mode provided is the “buffered” mode, which is specified by using the

MPI Bsend() and MPI Ibsend() calls. A buffered send operation can be started regardless

of whether a matching receive has been posted and may even complete before a matching

receive is posted. A buffered send is considered a “local” operation because it’s completion

does not rely on any other processes, so it can be completed without communication. MPI

requires that the application provide explicitly allocated memory to buffer the messages.

The next explicit mode is the “synchronous” mode, which is specified by using the MPI -

Ssend() and MPI Issend() calls. This mode can be started if a matching receive has not

been posted; however, it will not complete successfully until a matching receive is posted

and the receive operation has started to receive the message. As a result, the completion

of the send call indicates not only that the receiver has matched this send with a waiting

receive, but that the send buffer can be reused. A synchronous mode send is non-local.

The final explicit mode is the “ready” mode, which is specified by using the MPI Rsend()

and MPI Irsend() calls. A ready-mode send may only be started if the matching receive has

already been posted. If this is not the case, the call is considered to be erroneous and the

outcome is undefined. A ready-mode send has the same semantics as the standard-mode

send, except that in some implementations the use of ready-mode may eliminate the need

for a handshake, so it may provide a performance advantage over the standard mode.
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3.5 Collective Routines

The term “collective” refers to communications operations that communicate between multi-

ple processes simultaneously. MPI provides a vast array of collective communication routines,

including ones for broadcasting, spreading, and collecting data. MPI can also perform re-

duction and scan operations using either pre-defined or user-defined operations. Collective

routines must be called by all members of the group associated with the communicator used;

however, the effect may be different on different processes. MPI collective routines are not

required to synchronize the processes although they may do so. This means that the MPI

programmer must ensure that there are no cyclic dependencies between calls (as this may

lead to deadlock in a synchronizing implementation) and also ensure that if synchronization

is needed, it is explicitly provided via a barrier or similar routine.

3.5.1 MPI Barrier()

MPI’s barrier routine takes only one parameter – a communicator object. This routine simply

blocks when entered until all members of that communicator have arrived, at which point

they are all allowed to proceed. Barriers are a common function in parallel programming

because they provide a simple way to synchronize multiple processes.

3.5.2 MPI Bcast()

MPI Bcast() is a function that broadcasts data from one process to many other processes

(shown in Figure 3.1). It is called by the process sending the data as well as every process

receiving the data. The source of the data is determined by a parameter that must be the

same on all systems defining the “root” node. If a node calls MPI Bcast() and specifies its

own rank in the communicator as the root parameter, it sends data from its buffer parameter
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Figure 3.1: Broadcast Example

to every other node in the communicator. If a node’s rank in the communicator is not equal

to the root parameter, it receives data into its buffer parameter from the root node. The

result is that the root’s buffer is replicated on every node participating in the call.

3.5.3 MPI Scatter(), MPI Gather(), and Related Functions

MPI provides a number of variations on standard scatter and gather routines. A scatter

routine gets data that is present in a single process and spreads it out evenly among other

processes. A gather routine is the reverse of a scatter routine in that it gets data spread

out among a number of processes and collects it all at one process. Both operations are

demonstrated in Figure 3.2. MPI provides two further routines. The first is MPI Allgather()

which performs a gather operation, except instead of returning all the values to one process,

the values are returned to all processes so that they all end up with an identical set of data

that was made up of the data from each individual process (this is shown in Figure 3.3).

The other is MPI Alltoall(), which is an extension of MPI Allgather() to the case where

each process sends distinct data to each of the receivers. The jth block sent from process i

is received by process j and is placed in the ith block of that process’ receive buffer. The

operation performed by MPI Alltoall() is shown in Figure 3.4.

Aside from these functions, “vector” variants of each provide additional flexibility. The

vector variant of the gather routine (MPI Gatherv()) provides an array parameter instead of
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Figure 3.2: Scatter/Gather Example

Figure 3.3: Allgather Example

Figure 3.4: All-to-all Example
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a scalar parameter for specifying the number of elements to gather from each process. This

allows a different number of elements to be gathered from each process instead of the same

number from each. It also provides an array of displacements that can be used to specify

where the data should be stored in the buffer on the root process. The vector variant of the

scatter routine allows the user to specify a different number of elements to distribute to each

process, and a list of displacements relative to the beginning of the source array to specify

where the root should send data from to each process.

MPI Allgather() and MPI Alltoall() have similar vector variants called MPI Allgatherv() and

MPI Alltoallv(). MPI Allgatherv() is just an extension of MPI Gatherv() where all members

receive the data instead of just the root. MPI Alltoallv() allows processes to specify different

values for the number of elements to send to and receive from every other process. It

also allows you to provide an array of displacements for the send buffer and an array of

displacements for the receive buffer. Finally, there is MPI Alltoallw(), which is even more

generalized in that it allows everything MPI Alltoallv() does, but it additionally allows the

sending datatype and receiving datatype parameters to be arrays so that every block sent

and received can have a different datatype. This function can be used to emulate scatter and

gather functions with the functionality to provide different datatypes for each block, which

is why there is no “Scatterw”, “Gatherw”, or “Allgatherw” functions.

3.5.4 MPI Reduce()

A Reduce operation gets data from multiple sources and reduces it into a single value by

means of some operation. A common operation is to sum the values on many processes and

have the root node end up with the final sum. The MPI implementation of this operation

takes a source buffer address, a destination buffer address (which is only relevant on the

root), the number of elements, the datatype of those elements, an operation to perform (of

type MPI_Op), and a communicator. MPI also provides MPI Allreduce() which does the same
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process, except returns the result to all of the participating processes.



Chapter 4

MPI Implementation on SCMP

The MPI implementation described in this paper is guided by a few goals that should be

stated up-front. First, it does not implement 100% of the MPI 1.2 standard. The goal is to

provide an MPI implementation that will run most MPI programs, and therefore rarely-used

functions that are non-trivial to implement have been omitted.

Next, functions have been designed to be algorithmically efficient, but an emphasis has

been placed on code clarity and ease of modification over optimization. For example, many

functions call other MPI functions — inlining this functionality would remove the function

call overhead, but would mean longer functions and repeated code, both of which reduce

readability and maintainability.

Finally, support for Intercommunicators (as opposed to standard Intracommunicators) has

been neglected. The framework is in place, but the actual support is not there. This is mostly

due to a lack of perceived applications and because their usefulness was limited before MPI

2.0, which was not implemented in this project. If the MPI 2.0 specification is implemented

in the future, support for Intercommunicators should be added.

36
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4.1 Hardware Considerations

A number of factors need to be considered when creating a software implementation for a

specific hardware platform. One of the main features of the SCMP system over traditional

multiprocessors is the high-bandwidth/low-latency on-chip network. Since MPI is a com-

munications library, this will be a significant consideration. However, there are some other

qualities of the hardware architecture that guide design decisions as well.

4.1.1 Network

A number of unique features of the SCMP network play into design decisions for a com-

munications library. The most obvious is that it has an exceptionally low latency, high

bandwidth network. This means that computation cost can potentially be on the same or-

der of magnitude as communication costs. Another feature is that there are certain inherent

communications commands built into the ISA of the SCMP processor. Primitives exist for

sending message headers, register values, blocks of memory using DMA, and terminating

messages.

One of the problems encountered with the SCMP network is that it only supports two types

of messages – thread and data. Thread messages can be used as control messages or to send

small amounts of data, but the amount of data a thread message can carry is limited by the

number of registers available to a thread context.

Data messages can send potentially large amounts of data, but the sender is required to

specify a destination memory address for this data. This was not a problem when the

project was started and most of the memory in programs was statically allocated, but since

the introduction of malloc() functionality for dynamically allocating memory, it is unlikely

that one processor will understand another processors’ memory mapping well enough to
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determine where data should be placed on the remote processor. This means that some

degree of handshaking must occur so that the processors can agree on where the data for

a specific communication should go. The low latency of the network can help mitigate this

problem, but some considerations brought up in the Threads subsection, section 4.1.3, below

can cause problems. For a communications library to be efficient on this architecture, it needs

to know when to use each type of message.

4.1.2 Memory

Since all memory is on-chip, the SCMP system has lower memory latencies than would be

expected from systems with off chip memory. However, chip area is limited, and as a result

there is limited memory for each processor. Generally, it has been considered that between

2 and 8 MB of memory will be available to each processing element. While this is not a

trivial amount of memory, it is orders of magnitude smaller than what would be expected on

a cluster of workstations, which is one of the popular configurations for a message-passing

system. A communications system should be able to be fairly lean on memory, but this is

still something to be aware of.

The current implementation is approximately 120 kB of compiled code and under normal

use its dynamic memory footprint should be expected to be smaller than the code size. The

per-message overhead is designed to stay as small as possible, and structures like linked lists

are used whenever possible instead of allocating large static arrays that are likely to waste

space. That said, sending large messages of type MPI_PACKED could cause problems since

that requires that both sides of the communication have a “packed” version of the data

transmitted in addition to the original data. This could potentially cause a problem if large

messages are sent in this manner.
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4.1.3 Threads

One of the largest implementation issues concerns the SCMP threading model. To keep the

system simple from both programming and hardware implementation standpoints, only a

form of cooperative multitasking is available. Threads suspend only when they explicitly

give up control of the processor, or if they are blocked on a network call. This makes the

programming model easier since critical sections that don’t make use of network calls can

be atomic if they don’t call suspendThread(). It also simplifies the hardware implementation

since preemptive multitasking typically requires some sort of clock interrupt.

Recall that there are two types of network messages: THREAD messages and DATA mes-

sages. DATA messages are fine if the sender knows where the data needs to go, but some

negotiation is required before that is known. As a result, THREAD messages are the obvious

choice for the negotiation phase. Unfortunately, cooperative multitasking means that there

can often be a long period of time between when a THREAD message is received and when

the thread it creates has a chance to actually execute.

This can be mitigated to a degree. In loops where a process is waiting on a message to com-

plete, suspendThread() is called repeatedly to allow threads created by THREAD messages

to be executed. However, it would be better if communication could progress when it is

not being waited on, so when the data is needed it could already be there. Sometimes this

occurs; however, it is hard to assure it will happen. The key is to minimize the amount of

handshaking that goes on for any given data exchange. Unfortunately, a certain amount of

handshaking seems unavoidable. Of course, on such a low-latency network, the performance

impact can be barely significant.
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4.2 Implementation Details

4.2.1 Datatypes

The functionality MPI provides for user-defined datatypes is powerful, but it needs to be

analyzed with regards to the capabilities of the hardware. In general, it allows one process to

send arbitrary pieces of data from arbitrary locations in memory to another process which

can get those pieces of data and put them wherever it desires as well. SCMP’s network

support certainly allows for creating a message from data distributed throughout memory.

However, it would need to be sent to a contiguous buffer on the remote side since only the

remote side knows what the layout should be on that processor (the data layout can be

different on both sides as long as the number and types of data objects is the same).

It is possible that the sending processor could learn the recipient’s data layout by commu-

nicating with it, but the additional negotiation would probably offset any gains with this

approach. Since the recipient processor will otherwise have to unpack the data at the desti-

nation, it was determined that explicitly packing any nonstandard data before sending was

worthwhile. When a sending procedure is called with a non-primitive datatype, it packs

the data into a buffer and calls itself with the new buffer as the source buffer and with

the datatype as MPI_PACKED. When a receiving procedure is called with a non-primitive

datatype, it calls itself with a temporary receiving buffer and datatype MPI_PACKED and

after that returns, it unpacks the data into the real buffer. This approach keeps the code

simple and performance reasonably high. The only clear improvement would be to pack the

data into the network message on the fly, which would be fairly complicated and may not

have much of a performance improvement.
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4.2.2 Send/Receive

The MPI standard contains a number of variants of basic send/receive primitives. Since the

MPI standard is so complex, it was decided that code reuse should be maximized. As a

result, blocking send and receive calls are implemented with non-blocking calls and a call to

MPI Wait(). Due to message recipients often not knowing in advance which process will be

sending the message, it was decided that most processing should occur on the receiving side.

All the information needed about a specific message is included in an MPI Request object

on each side participating in the transfer. There are four request queues associated with

each communicator. Two are for use with collective communications, and will be discussed

later. The remaining queues are the “postedReceives” and “postedSends” queues.

The postedRecieves queue is used when the receiving side calls the nonblocking receive

function, MPI Irecv(), without a sender having advertised a matching message to send (Fig-

ure 4.1). When this occurs, a MPI Request object is created with the location of the receiving

buffer, the size of the data it expects, the address of the receiving node, the address of the

sending node (or MPI ANY SOURCE if it will accept messages from any source), the tag

associated with the receive (or MPI ANY TAG if it will accept messages with any tag), the

number of the communicator being used, and the datatype expected. This MPI Request

object is then added to the postedReceives queue.

The postedSends queue is used when a sender tries to send a message, and no matching

receive has been posted in postedReceives (Figure 4.2). When MPI Isend() is called on the

sender, it sends a thread message to the receiver calling MPI Post send(). This routine

checks to see if a matching message request has already been posted in the postedReceives

queue. If there is a request, this function simply sends a thread message back to the sender

that calls MPI Request data(). If no such request exists, it adds this request to the posted-

Sends queue. When the receiver finally calls MPI Irecv() and finds a matching message in

postedSends, it sends a thread message to the sender that calls MPI Request data().
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Figure 4.1: Receive-first Handshake

Figure 4.2: Send-first Handshake
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When MPI Request data() is called on the sending node, it is passed enough information

to locate the MPI Request object on the sending node, the memory address of the receiving

buffer on the receiving node, and the memory address of the “completed” flag on the receiving

side. This function simply looks in its local request object, finds the source buffer, sends that

data in a data message to the receiving side’s receiving buffer, and then sends a data message

writing a ‘1’ to the “completed” flag on the receiving side so it has a way of knowing that the

data transmission is complete. It then sets the “completed” flag in its local MPI Request

object so the sending process knows that the send is complete.

Despite all of the messages involved, the latency of the send/receive process is surprisingly

low. While there is certainly wasted time, when message queues are short and messages are

of a reasonable size (hundreds of words or larger), the time required to send a message is

fairly proportional to the length of the message, which implies that the overhead is tolerable.

One possible improvement would be to add a “short protocol” for very small messages that

would remove some of the handshaking since data could be sent in a thread message. This

would help minimize the latency of very short messages, which currently is very high. Also,

hardware support for messages has been pursued for this architecture which could drastically

reduce some of the latency problems.

A decision was made to avoid implementing the different modes of operation for sends. To

start, ready mode sends would probably involve most of the same communication, and as

such wouldn’t be of much use. The standard mode send currently implements synchronous

semantics, so that implementation is covered. As noted in [13], ready mode and standard

sends may be implemented as synchronous sends without violating the MPI specification.

The only failing is that buffered sends are not provided. In this author’s opinion, the buffered

semantics are only a substitute for proper use of non-blocking I/O, and as such can be omitted

without impeding the power of the library. Also, in a limited memory environment, buffering

doubles the memory footprint of larger messages, which is undesirable.
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4.2.3 Communicator Functions

Communicators introduce a unique problem – these are identifiers that must be globally

unique in a system. At least, if two processes have different communicators with the same

identifiers, the groups associated with the two communicators must be disjoint, or else pro-

cesses may get confused regarding which communicator a message is using. There are a

number of possible solutions to this.

The first method developed involve processes using a reduction operation to perform a bitwise

OR on an array of integers with each bit set to ’1’ if that communicator was in use on that

process. The result would show which communicators were unused on all processes. It was

eventually determined that, while this algorithm provides an efficient use of the space of

communicator values, it is exceptionally slow since it requires a collective calculation.

Eventually, it was determined that the simplest solution was also the fastest. The highest

numbered processor on the chip keeps a list of valid communicator values and whether they

have been used or not. The last processor was used since the first processor takes control of

a number of other calculations, and this way distributes the load somewhat better.

To duplicate a communicator (MPI Comm dup()), the node with rank 0 in the current

communicator asks the last processor on the chip for a free context with a thread message.

The first free context is sent back as a data message. Once this response is returned, the

rank 0 node enters a barrier that the other nodes of the communicator have been waiting

in. Once every node is in the barrier, they can exit the barrier, and every node but the

rank 0 node sends a thread message to the rank 0 node asking for the new communicator

context and the new context is returned to each node with a data message. The nodes use

this information to duplicate the current communicator with a different context ID. The

call ends in another barrier to ensure that no node tries to use the new communicator until

everyone has it.
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Creating a communicator (MPI Comm create()) works in a similar manner to duplicating a

communicator, except that the process group for the new communicator is specified instead

of just using the group from the current communicator. The MPI Comm split() function is

much more complicated than MPI Comm dup(). The general process is the same, except all

processes tell the rank 0 process their values for “color” and “rank”, and the rank 0 process

then calculates all of the communicators created, asking the highest numbered processor for

free communicator contexts as it works. Finally, the rank 0 process distributes information

about these new communicators to all callers of the function and a final barrier prevents any

process from going forward and using the new communicators until all processes have the

full information.

4.2.4 Collective Operations

While the basic point-to-point send and receive operations in MPI are likely to only add

a fairly constant overhead to the existing SCMP operations, collective operations have an

opportunity to be much worse. Most of the applications using native SCMP network in-

structions were designed by people who knew the architecture well enough to be able to

optimize the communications patterns. Unfortunately, MPI abstracts away a good deal of

the underlying architecture, so there is a potential for very poorly designed process layouts.

Ideally, the MPI implementation would find an optimal communications structure for every

operation; however, that is very difficult. This implementation has opted for making collec-

tive communication functions that are reasonably efficient in most cases. Some special cases

could be developed for certain circumstances where there is an especially efficient implemen-

tation, but in the interest of keeping the code manageable this has been ignored for the time

being. As time goes on, the remaining bottlenecks of the implementation will be discovered,

and extensive optimization in those cases can occur.
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Barrier

Barriers are traditionally a bottleneck in parallel systems. In general, any sort of synchroniza-

tion primitive tends to hurt performance since they require communication between a number

of different processes.[14] In SCMP’s libraries, there already exists a high-performance bar-

rier routine; however, it doesn’t have the flexibility to be used in the same contexts as the

MPI Barrier() function.

Since barrier calls in MPI are associated with a communicator, a variable barrierCount

was added to the communicator data structure. This variable is initialized to 0 when the

communicator is created. Whenever a process enters the barrier that isn’t the rank 0 process

in that communicator, it sends a thread message to the rank 0 process that increments the

barrierCount variable for that communicator, then it waits for its barrierCount variable

to be non-zero. When the rank 0 process enters, it increments barrierCount and waits for

barrierCount to equal the size of the group, calling suspendThread() repeatedly to allow the

thread messages time to execute. Once the rank 0 process sees that all processes in the

communicator have entered the barrier, it resets barrierCount to 0, then it sends a thread

message to every other process that sets the other processes’ barrierCount variables to 1,

which is the condition they are waiting on.

At this point, all processes are allowed to continue. It is possible this implementation would

be better using data messages instead of thread messages for the final notification; however,

since the processes are repeatedly suspending themselves while waiting, any latency from

the use of thread messages should be minimal.
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Broadcast

Due to the high-bandwidth of the SCMP network, a fairly straightforward approach to

broadcasts seems to be reasonable. The current approach simply has every process that is

not the root execute a blocking receive, and the root process executes a nonblocking send for

every process in the communicator then waits on those messages to complete. As the number

of processors increases, this procedure may start to become inefficient, so it is possible that in

the future a better solution may be needed. The best option would probably involve looking

at the size of the communicator and if it is large, use a tree-based distribution system. The

current approach can have lower latency than the tree approach for small sets of processors,

and that is why that implementation was chosen.

Scatter, Gather, and Variants

MPI Scatter(), MPI Gather(), and related functions all use similar techniques to MPI -

Bcast(). Once again, for small numbers of processors, the technique of using point-to-

point operations reduces the latency. If a tree structure is used to distribute data (or some

other hierarchical communications topology), the second phase of communication cannot

occur until the first phase has already occurred. This involves the full handshaking process

between nodes, and the time required for the recipient to realize it has received the data.

When sending point-to-point messages, the root can be responding to one message while

another request is heading through the network, causing an effective pipelining of the message

components.
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Reduce

The reduction operation provided by the MPI Reduce(), MPI Allreduce(), and MPI Reduce -

scatter() functions is a special case. Since the operations used in the reduction procedure

are required to be associative and are sometimes explicitly commutative[13], complex com-

munications patterns can be used to reduce the data, and distributing the computation can

compensate for the latency increases associated with hierarchical communications. Note that

the scan operations (MPI Scan() and MPI Exscan()) must be chained together to complete

correctly by having each process send the result it calculates to the next ranked process.

For the reduction operation, a simple algorithm is used that halves the number of processes

participating in the communication every step, as shown in Figure 4.3. In the first step,

every odd-ranked process sends its data to the even-ranked process with a rank one less than

the odd process. From this point on, the odd processes are out of the calculation. In the

next step, every process that is not a multiple of 4 passes data to the process numerically

below it which is a multiple of 4. This process repeats until the only process left to pass data

to is the rank 0 process, which is considered to be a multiple of every number. There are n

steps in the process, where n is the smallest value for which 2n >= communicator size. So

a communicator with 16 members would take 4 steps, and a communicator with 64 members

would take 6 steps for a full reduction.
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Figure 4.3: Communication steps for a reduction operation on a 4x4 processor grid



Chapter 5

Performance Analysis

The approach taken with regards to performance analysis of the MPI implementation is

one of comparing the performance of existing SCMP benchmark programs with versions

rewritten to use the MPI implementation. It is difficult to determine exactly what should

be done to make the two versions comparable, so the general rule was to use the most

obvious and simplest MPI commands for a given communication. By comparing MPI and

non-MPI versions of the same program, the overhead of the MPI library can be analyzed in

a convenient manner.

The two benchmarks chosen came from work done by William Wesley Dickenson [15]. Both

are linear algebra matrix operations, which have traditionally been popular benchmarking

tools for parallel systems (LINPACK is a prime example of a benchmark based on linear

algebra). They both also have a strong communications component, which is important

since the overhead of the MPI library would be diluted if applications with minimal com-

munications were used. All benchmark times presented are in thousands of clock ticks (or

microseconds, assuming a 1 GHz system clock). The times presented are only for the core

of the algorithm. Initialization and finalization routines were omitted since they spend most

50
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vectorX = zeroVector();
vectorR = vectorB;
vectorP = vectorB;
error = 1.0;
while(error > errorTolerance) {

alpha = (transpose(vectorR) * vectorR) /
(transpose(vectorP) * (matrixA * vectorP));

nextVectorR = vectorR - alpha * (matrixA * vectorP);
beta = (transpose(nextVectorR) * nextVectorR) /

(transpose(vectorR) * vectorR);
vectorX = vectorX + (alpha * vectorP);
vectorP = nextVectorR + (beta * vectorP);
vectorR = nextVectorR;
error = |matrixA * vectorX - vectorB| / |vectorB|;

}

Figure 5.1: Pseudocode for Conjugate Gradient Benchmark

of their time reading and writing data, and currently the SCMP simulator does not attempt

to accurately represent the time required for I/O operations.

5.1 Conjugate Gradient Benchmark

The Conjugate Gradient is commonly used to solve both linear and nonlinear systems of

equations. In general, it solves the equation Ax = b for x, where A is a sparse n x n matrix,

b is a 1 x n vector, and x is an unknown 1 x n vector. The pseudocode for the algorithm is

given in Figure 5.1.

In order to parallelize this algorithm for SCMP, rows of matrix A and portions of vectors b

and r are distributed cyclically among the nodes. Each node has a copy of p and x vectors,

but only manipulates its portion of p. For more detailed information about this benchmark

and the SCMP implementation of it, see [15].
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5.1.1 Characteristics

The main loop of this benchmark performs three reduce operations and 4 + n broadcast

operations, where n is the number of processors. Out of those operations, all three re-

duce operations and four of the broadcast operations transmit only one double value,

and transmitting small amounts of data is a fairly inefficient operation in this MPI li-

brary. However, the n remaining broadcast operations transmit a large amount of data

(num rows in A/num processors double values). This can be more efficient, however note

that these broadcasts go to every processor, and collective operations on a large number of

processors tend to have a lot of overhead.

5.1.2 Expectations

The collective calls with only one double value will be slow, but they are unlikely to dominate

the time needed. The larger transfers are the important part, and the performance on those

should be fairly competitive. For large data sets and small numbers of processors, the MPI

implementation may actually do quite well.

5.1.3 Results

The performance results for the Conjugate Gradient benchmark are mixed (see Table 5.1 for

performance numbers). As noticed in both benchmark programs used, there appears to be

an overhead associated with increasing the number of processors that exceeds the overhead

the native SCMP implementations experience. Also, larger data sets increase both the

computation to communication ratio and increase the size of the communications, allowing

the mostly-fixed overhead of the MPI calls to be amortized over a larger data transfer. While

there are a number of runs that had over 100% overhead over the native SCMP version, also
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Figure 5.2: Relative Performance of MPI to Native SCMP Versions

notice that at 500,000 nonzero elements the runs all had fairly acceptable overheads. In

Figure 5.2, it is clear that as the data size increases, the overhead diminishes rapidly. Even

the 16 processor version, with 20.6% overhead, is potentially within tolerable limits.

It should be noted that accidently using a higher optimization setting on the compiler caused

the 4 processor MPI version not only to beat the native SCMP version at 500,000 nonzero

elements, but it actually was faster than the sequential solution divided by 4. Since the per-

formance overhead of MPI in that situation can be more than compensated for by additional

compiler optimization, that would probably be considered acceptible to most people.
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Table 5.1: Conjugate Gradient Performance Numbers

# of Nonzero # of MPI Time Native SCMP Ratio

Elements Processors Time

2000 4 2717 1695 1.603

5000 4 3203 2178 1.471

10000 4 4005 2983 1.343

50000 4 10462 9451 1.107

500000 4 82306 81293 1.012

2000 8 3146 1267 2.483

5000 8 3397 1516 2.241

10000 8 3797 1921 1.977

50000 8 6958 5150 1.351

500000 8 43064 41262 1.044

2000 16 5586 1055 5.295

5000 16 5712 1190 4.800

10000 16 5920 1402 4.223

50000 16 7493 3048 2.458

500000 16 25508 21150 1.206
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Figure 5.3: Processor Assignment to A

5.2 QR Benchmark

For a given matrix A, the QR decomposition calculates matrices Q and R such that A = QR,

where Q is orthogonal and R is an upper-triangular matrix of the same dimensions as A.

This calculation is used in a number of engineering applications such as signal processing

and least squares calculations. This implementation uses the Householder method, which

operates on each column of A in succession, transforming every element in that column

below the diagonal into 0. After this has been done on all columns, the resulting matrix is

R. For more detailed information about this benchmark and the SCMP implementation of

it, see [15].

5.2.1 Characteristics

The assignment of processors to elements of matrix A is as if the processor array was tiled

over the matrix. A processor i has the intersection of columns where col num%X Dim ==

i%X Dim and rows where row num%Y Dim == i%Y Dim (where X Dim is the number of

processors in the X-dimension and Y Dim is the number of processors in the Y-dimension).
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This is demonstrated with a mapping for a 4x4 grid of processors onto an 8x8 matrix in

Figure 5.3.

For every column in the matrix A, first all processes with data from that column perform a

reduce operation together. Then the owner of the diagonal element for that column sends it

to the process with the top element in that column. Finally, the top element in the column

broadcasts a double array and a single double value to the rest of the column.

After this is completed, every process enters a barrier. Note that processes not involved in

that column were waiting in the barrier while the column completed its calculations. Then

an array of double values and a single double value are both broadcast along the rows.

Finally, a MPI Allreduce() occurs along the columns. After this, the process repeats for the

next column.

For analysis, it is assumed that in each iteration one column performs a reduce and two

broadcasts, there is a global barrier, there are two broadcasts that every node performs

along their row, and an allreduce (which is a reduce and a broadcast) is performed within

each column.

5.2.2 Expectations

This benchmark is heavy on communication, especially collective communication. It uses a

number of reduce and broadcast operations. This means that it will probably show a high

performance penalty for using the slower MPI operations instead of the native SCMP ones.

The worst case scenario will be with a large number of processors and a small amount of data

per processor — the pathological case would involve a large processor array with one element

of the matrix A per processor. That decreases the computation to communication ratio and

would hurt the original system, but would cause even more performance degradation to a

system like MPI with more communication overhead.
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5.2.3 Results

The following results were found as shown in Table 5.2. This data includes cases that try to

show the full range of performance that can be obtained from this library. First, consider the

pathological cases. The worst is running the QR decomposition on an 8x8 grid of processors

with an 8x8 matrix. This has a large number of processing elements, and each one only holds

one data value. An operation like this is dominated by communication time. Notice that the

MPI version runs over 7 times slower than the original version. That is the worst result out

of every configuration attempted with this benchmark. Clearly, in this case, the MPI library

adds a tremendous amount of overhead. There are a few other cases like this, and they occur

whenever the amount of data per processor is low, which increases the communication to

computation ratio.

There is also overhead created when the number of processors increases. Realize that com-

puting the 256x256 matrix with 16 processors maps the same amount of data to each pro-

cessor as the 128x128 matrix computed with 4 processors. While the 4 processor solution

adds 29.3% overhead to the computation, the 16 processor solution adds 80.3% overhead.

The same goes for using a 256x256 matrix with 4 processors (13.0% overhead) versus using a

512x512 matrix with 16 processors (40.2% overhead). This is further illustrated in Figure 5.4

and Figure 5.5 — in these cases, it is clear that the performance of the library falls off at

high processor counts. The library does not scale well, and the blame for that most likely

falls on the broadcast operation which is optimized for smaller processor configurations.

With the unpleasant results out of the way, there are also positive results present. The

overhead goes as low as 2.9% for a 1024x1024 matrix with 4 processors. The 512x512 matrix

with 4 processors has 6.0% overhead, which is also reasonable. In general, the performance of

a 4-processor configuration is fairly good, as shown in Figure 5.6. The MPI version appears

to be acceptable for large data sets, depending on the user’s needs. Realize that sequential

code on a modern microprocessor can perform this operation on a 1024x1024 matrix in a
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Table 5.2: QR Decomposition Performance Numbers

Matrix # of Native SCMP MPI Time Ratio

Size Processors Time

8x8 64 77 556 7.221

16x16 64 164 1181 7.201

128x128 4 17277 22340 1.293

128x128 16 5580 14205 2.546

128x128 32 3524 12479 3.541

128x128 64 2648 17576 6.637

256x256 4 126760 143258 1.130

256x256 16 35626 64229 1.803

256x256 32 19791 47988 2.425

256x256 64 11993 61566 5.133

512x512 4 974639 1033072 1.060

512x512 16 257151 360416 1.402

512x512 32 134709 233885 1.736

512x512 64 73206 248394 3.393

1024x1024 4 7652352 7872544 1.029

matter of seconds, so this problem is actually quite small in terms of problems that are

usually run on a parallel system. Unfortunately, beyond 1024x1024 is very expensive to

simulate, and there are also concerns of insufficient memory beyond that point (a double is

8 bytes, so on a 4 processor system, 1024 ∗ 1024 ∗ 8/4 = 2 MB of data per processor out of

a 8 MB maximum addressable space).
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Chapter 6

Conclusions

6.1 Observations on Findings

It is usually impossible to add a layer of abstraction to some process without hurting per-

formance, and this MPI library proved no exception. Much of the functionality that MPI

brings to the table was not used in the tests, so the code implementing that functionality

ended up just being overhead. Also, these benchmarks were written with the normal SCMP

communications model in mind, so they were designed to “push” data to remote nodes and

had no need for a system that could perform a send before the other side needed to receive

it.

The intention of those benchmarks was more to determine how much overhead the MPI

library added to SCMP communications than to prove that efficient MPI programs could be

written. As a result, these programs are not written as efficiently as they could be. Efforts

were made to keep the communications semantics as close as possible to the original program

to ensure that the performance numbers are representative of the MPI overhead instead of

the skill of the programmer modifying the code to use MPI compared to the skill of the

61
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original benchmark developer. The only changes that were allowed were when it was a natural

translation; for example, many computations using SCMP THREAD messages were modified

to use MPI Reduce() as that is the natural replacement. Also, barrier calls were removed in

areas where they were unneeded, since this implementation synchronizes on collective calls,

whereas the previous methodology would have required explicit synchronization.

For example, in the Conjugate Gradient benchmark, the function DistributeP() is currently

written as a loop that iterates through the processors. It has each processor build a contigu-

ous buffer of the data to be sent, call MPI Bcast() to broadcast it to the other processors, and

finally the recipient processors unpack that buffer into their local data structure. This entire

operation could be performed with one call to MPI Alltoall() using a derived datatype. It is

hard to say for sure if this would be faster, but this alternative would allow communication

to be overlapped, most likely causing a significant performance improvement. It is possible

that the increased network congestion could possibly make performance worse; however, that

scenario is unlikely since a broadcast call already has a bottleneck at the node broadcasting

the information.

The performance for applications with small data sets and/or a large number of processors

was especially poor. This is a result attributable to a low computation/communication ratio.

A variant of Amdahl’s Law[16] seems to apply. In a general sense, Amdahl’s Law states that

if part of a computation takes n% of the time of the full computation, the best possible

performance gain from optimizing that part of the computation is n%. That is commonly

used to show a theoretical limit on speedup when parallelizing a program, since part of any

program is inherently serial and cannot be made faster with additional processors. In this

case, if an MPI program spends, for example, 10% of its time in communication routines, it

could not be sped up by more than 10% if the MPI routines were replaced by optimized native

SCMP communications. Thus when the time spent in communication is small relative to the

time spent in computation, it is unlikely that a large difference will be observed in the results

from using native SCMP communication commands versus using the MPI implementation
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presented in this thesis. This is shown in benchmarks run with a small number of processors

on large data sets — in these cases, the overhead due to MPI is often less than the overhead

of using a lower optimization setting on the compiler (for compiler performance statistics,

see [17]).

An advantage of the SCMP hardware is fast, low-overhead communications. Aside from low-

ering the communications penalty of existing parallel applications, this feature also allows

SCMP to attempt to undertake applications that previously were inefficient to parallelize

due to frequent needs for communication between cooperating processes. While the MPI

library is comparable to the native SCMP instructions when sending large blocks of data,

when sending small amounts of data the overhead in the MPI library can make a significant

negative impact on execution time. An important mitigating factor is that MPI was not

designed for efficient fine-grained communications. MPI is designed for clusters and dis-

tributed memory multiprocessors, and the software that is written for such systems is aware

that communications overhead is significant.

This leads the author of this thesis to reason that the MPI implementation presented herein

is usable for most SCMP applications. There is significantly less code in the MPI versions

of the benchmarks presented, and it can be inferred that the time required to write these

benchmarks from scratch using MPI would be lower than the same task using the conven-

tional SCMP communications instructions. When used in applications that are traditionally

parallelizable, the performance degradation is minimal. For applications trying to take full

advantage of the features of the SCMP network, it will still be worth the effort to write them

using the native instructions instead of MPI. Every layer of abstraction has its cost/benefits

tradeoffs, and MPI is no exception.

This implementation appears to be successful, as it seems to have met its two main goals.

Its first goal was to provide a more user-friendly API for creating software for the SCMP

system without hurting performance too much. Most applications will not see a dramatic
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performance impact from using MPI and the smaller code size leads one to believe that

development will be easier, especially if the user is familiar with MPI from other parallel

systems. The other goal was to allow MPI programs from other systems to be easily ported

to SCMP. Aside from a few incompatibilities mentioned in the next section, it appears that

most MPI programs will run almost completely unmodified on the SCMP system. This will

make the process of testing application performance much easier than having to write a

SCMP version of every application for which SCMP performance results are desired.

6.2 Incompatibilities with Other Implementations

This implementation is designed to be as compatible with the MPI standard as possible, but

there are a few things that need to be kept in mind when porting applications from other

systems.

A change required in all MPI programs involves how the program is started. In a standard

MPI system, a copy of the program is executed on every processor simultaneously. The

SCMP system only starts executing the program on processor 0. This means that a program

such as the following:
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int main(int argc, char *argv) {
int rank;
int val;
MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank==0) {

val = 5;
MPI_Send(&val, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);

} else if (rank==1) {
MPI_Recv(&val, 1, MPI_INT, 0, 99, MPI_COMM_WORLD, MPI_STATUS_NULL);
printf("Value received: %u\n", val);

}
MPI_Finalize();
return(0);

}

Would need to be rewritten as:

#include "scmp.h"
void start(int argc, char *argv) {
int rank;
int val;
MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank==0) {

val = 5;
MPI_Send(&val, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);

} else if (rank==1) {
MPI_Recv(&val, 1, MPI_INT, 0, 99, MPI_COMM_WORLD, MPI_STATUS_NULL);
printf("Value received: %u\n", val);

}
MPI_Finalize();

}
int main(int argc, char *argv) {
parExecute(getXDim()*getYDim(), start, argc, argv);
return(0);

}

Note the introduction of a parExecute() call to cause the main function (renamed start())

to be executed on all processors. Note that MPI Init() must be called on all processors
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in order for the library to work correctly. Since most implementations expect that main()

will execute on all processors simultaneously upon starting the program, the safest way to

modify the code is to make a main() function that only calls parExecute() to execute the

old main() in parallel on all processors, as shown above.

A few MPI 1.2 features are not fully supported in this implementation. No support is pro-

vided for buffered sends, so if they are used in a program, the person porting the application

would have to check an make sure that the program did not rely on buffering to prevent

deadlocks. Also, no support exists for setting the mechanism by which errors are handled —

they are always returned as the result of the calling function. Occasionally, if the implemen-

tation considers an error especially fatal, the execution may be stopped by an assert() call.

In general, this only occurs when the processor would otherwise throw an exception later in

the function and cause the program to abort anyway, so the assert() call provides additional

clarity as to the source of the error. This implementation also does not support intercom-

municators or communication topologies; however, both features appear to be rarely used in

MPI programs.

For performance reasons, it would be wise to keep in mind that derived datatypes are handled

by using MPI Pack() and MPI Unpack(). As a result no performance benefit exists in using

derived datatypes versus using those functions. It would probably make sense to explicitly

use MPI Pack() and MPI Unpack() instead of derived datatypes anywhere derived datatypes

are not a perfect fit.

6.3 Summary of Work

The first step in creating this MPI implementation was to read through the MPI standard and

determine how the standard could be mapped to the capabilities of the SCMP hardware.

MPI functionality was then implemented in an incremental manner, with each function
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tested as it was created. The resulting code was developed using design principles with a

focus on code reuse and ease of modification. That methodology allowed subsystems of the

MPI implementation to be completely rewritten at times when it became clear they were

insufficient when adding new functionality.

After the library was complete, testing was performed with full MPI applications. This

approach is compared to the tests performed during development that tested individual

functions without regard to how they are used in a real application. During this time, bugs

were found and corrected, and previously overlooked functionality was added to the library.

During the testing process, it became clear that the existing SCMP simulator left much to

be desired in terms of debugging high-level libraries, such this MPI implementation. As a

result, a new simulator was created that sacrificed cycle-accuracy for a rich array of debugging

features. These features included bounds checking on all internal data structures, the usage

of linker output to map function names to addresses, and the ability to detect MPI calls and

retrieve data from the parameters for use in the simulator. An annotated screenshot of the

simulator appears in Figure 6.1.

The bounds checking assisted in finding errors in the code. Some errors would cause the

old simulator to modify data structures that caused symptoms in places far from the cause.

For example, one processor modified the thread contexts of another processor due to a bad

pointer. That kind of error is very difficult to trace since the symptoms show up in a

processor unrelated to the problem, and this more secure implementation of the simulator

caught problems before they were too far removed from the source.

Using the linker output enabled a number of useful features. Instead of just knowing the

location of the instruction pointer, this simulator could show the entire call stack using actual

function names. In the old simulator, if something inside a printf() call caused the processor

to throw an exception, the user could tell that it occurred in a printf() call by looking at the

instruction pointer when the exception was thrown. However, that function may be called
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Figure 6.1: Screenshot of New SCMP Simulator

many times in a program, and it may not be immediately obvious where the error occurred.

By showing the entire call stack, problems could be localized much more quickly. Having

the address to function name mappings available also allowed the simulator to produce the

parameters a specific function was called with, if desired.

Finally, the ability to interpret MPI calls was invaluable while debugging the MPI imple-

mentation. The simulator could show the status of the message queues associated with each

communicator during the execution of the program, and that made it much more convenient

to detect errors in message queue management and to determine the status of a communica-
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tion at a given part of the program. This is a far cry from a simulator that provides register

values and disassembled machine code.

Once the testing process was complete, some basic profiling was performed on the MPI ap-

plications. This helped focus optimization of the worst parts of the MPI implementation.

Optimizations were only performed if they did not have a significant impact on the read-

ability or maintainability of the code. A highly optimized version would require a number

of modifications, many of which are referenced in the next section.

6.4 Future Work

Additional work could still be done with this implementation. An obvious area is in the realm

of optimization. One source of overhead still present in this library is function call overhead.

To keep the code readable, functions were reused whenever possible. As a result, calling

one MPI function may result in a number of function calls. An example is MPI Allreduce()

— which calls MPI Reduce() and MPI Bcast() in order to perform its duties. However,

MPI Reduce() and MPI Bcast() both call MPI Isend() and MPI Irecv(), and both of those

functions call a helper function developed to simplify the creation of MPI_Request objects.

Considering that the processors in the SCMP system can send 2 flits, or 64 bits of data,

per clock cycle, the function call overhead is reasonably significant. An advanced compiler

could inline a number of these functions; however, the SCMP compiler is currently not that

sophisticated and may never be.

Additional experimentation is required to determine what algorithms are fastest for various

MPI functions. For example, in some cases a broadcast is best performed by simply having

the root send the data to each process individually. However, as the number of members in

the communicator increases, this becomes less efficient. A high-performance implementation

of MPI on this system would probably have multiple techniques for performing a broadcast
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and pick the best one based on the situation at hand. Such an implementation may also be

able to make use of the layout of the processors participating in a collective call to optimize

the communication. If MPI becomes the communications library of choice for SCMP, this

would be time well-spent.

Another optimization would involve creating a “short protocol” for data transfers. If a send

operation was started in order to send a few words of data, that data could easily be packed

into a THREAD message in order to eliminate the overhead associated with handshaking to

pass the data. If this was done, it is possible the thread created on the receiving end may

need to create an intermediate buffer for the data and copy it to the real destination when

a matching receive call is made.

There are a few MPI functions that were not implemented in this version of the library,

and it would be advantageous to have a 100% compatible MPI implementation so these

extra functions could be added. The addition of intercommunicators would not be especially

difficult and could make some programs with hierarchical communications patterns easier to

design. Also, the additions in the MPI-2 standard have been mostly ignored. While not all

of the MPI-2 features seem to make sense for SCMP, some of them could be useful.

A natural next step for this MPI implementation would be to integrate it with the work on

hardware support for send/receive based messages described in [11]. If this modification alone

only removed a few cycles from the time to perform any given communications operation,

a noticeable performance improvement would result. One would have to make sure the

hardware support matched MPI’s needs closely, or else the improved performance may be

overshadowed by extra code to work around the differences.

If the SCMP architecture were to be redesigned for MPI, there are a few changes that could

be made. The most obvious is removing the limitation of cooperative multitasking. In fact,

the only time MPI uses thread contexts is in order to handle message traffic, not for running

separate threads. If thread messages could preempt the main thread, the efficiency of the
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MPI library could be dramatically increased. Of course, if this was the case, there would

need to be a way to isolate critical sections in the main code. If threads were serviced quickly,

the system could have many less thread contexts since they currently only serve to buffer

incoming thread messages. If preemption was not allowed, more thread contexts could help

since there is a noticeable performance degradation when any operation causes more thread

messages to get sent to a node than it has free contexts to handle.

Finally, the next obvious step is to start using the MPI library. Original programs could be

created for SCMP using the MPI functions, and existing programs could be easily ported to

the SCMP system. With the current system, porting a standard benchmark efficiently and

correctly to SCMP can take months of time. Having a working MPI implementation could

lower that to weeks or perhaps even days, dramatically improving the productivity of SCMP

researchers.
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